久久精品电影网_久久久久久电影_久久99精品久久久久久按摩秒播_天堂福利影院_国产男女爽爽爽免费视频_国产美女久久

Journal of Hyperbolic Differential Equations

Journal of Hyperbolic Differential Equations

雙曲微分方程雜志

期刊周期:Quarterly
研究方向:數(shù)學(xué)
影響因子:0.426
通訊地址:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
官網(wǎng):http://www.worldscientific.com/worldscinet/jhde
投稿地址:http://www.worldscientific.com/page/jhde/submission-guidelines
審稿速度:平均6月

  中文簡(jiǎn)介

該期刊發(fā)表關(guān)于非線性雙曲線問(wèn)題和相關(guān)主題的原始研究論文,數(shù)學(xué)和/或物理興趣。具體而言,它邀請(qǐng)了關(guān)于雙曲守恒定律和數(shù)學(xué)物理中出現(xiàn)的雙曲偏微分方程的理論和數(shù)值分析的論文。期刊歡迎以下方面的貢獻(xiàn):非線性雙曲守恒定律系統(tǒng)理論,解決了一個(gè)或多個(gè)空間維度中解的適定性和定性行為問(wèn)題。數(shù)學(xué)物理的雙曲微分方程,如廣義相對(duì)論的愛(ài)因斯坦方程,狄拉克方程,麥克斯韋方程,相對(duì)論流體模型等。洛倫茲幾何,特別是滿足愛(ài)因斯坦方程的時(shí)空的全局幾何和因果理論方面。連續(xù)體物理中出現(xiàn)的非線性雙曲系統(tǒng),如:流體動(dòng)力學(xué)的雙曲線模型,跨音速流的混合模型等。由有限速度現(xiàn)象主導(dǎo)(但不是唯一驅(qū)動(dòng))的一般問(wèn)題,例如雙曲線系統(tǒng)的耗散和色散擾動(dòng),以及來(lái)自統(tǒng)計(jì)力學(xué)和與流體動(dòng)力學(xué)方程的推導(dǎo)相關(guān)的其他概率模型的模型。雙曲型方程數(shù)值方法的收斂性分析:有限差分格式,有限體積格式等。該期刊旨在為目前正在非常活躍的非線性雙曲線問(wèn)題領(lǐng)域工作的研究人員提供一個(gè)論壇,并且還將作為此類研究用戶的信息來(lái)源。提交稿件的長(zhǎng)度沒(méi)有先驗(yàn)限制,甚至可能會(huì)發(fā)表長(zhǎng)篇論文。

  英文簡(jiǎn)介

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.

  近年期刊影響因子趨勢(shì)圖

  相關(guān)數(shù)學(xué)SCI期刊推薦

SCI服務(wù)

搜論文知識(shí)網(wǎng) 冀ICP備15021333號(hào)-3

主站蜘蛛池模板: 成人在线精品视频 | 久久久久久久久久久丰满 | 国产精品毛片一区二区三区 | 日韩三级视频 | 七七婷婷婷婷精品国产 | 国产高清精品一区二区三区 | 日日夜夜天天 | 亚洲综合热 | 成人av播放 | 精品一区二区在线看 | 本地毛片| 自拍偷拍中文字幕 | 91天堂网 | 国产在线中文字幕 | 午夜影院免费体验区 | 黄色av网站在线免费观看 | 欧美99久久精品乱码影视 | 精品国产乱码久久久久久丨区2区 | 拍戏被cao翻了h承欢 | 欧美日韩亚洲国产 | 亚洲精品一区二区三区蜜桃久 | 国产午夜精品一区二区三区嫩草 | 国产精品成人一区 | 在线观看国产91 | 激情久久网 | 欧美精三区欧美精三区 | 欧美一级一| 日韩精品一区二区三区在线观看 | 午夜成人在线视频 | 亚洲人va欧美va人人爽 | 狠狠骚 | 亚洲欧美aⅴ| 国产一区二区在线免费播放 | 在线观看日韩av | 日本在线看片 | 综合色婷婷 | 九色在线观看 | 日韩在线观看一区 | 精品av天堂毛片久久久借种 | 日韩欧美在线一区 | 西西裸体做爰视频 |