久久精品电影网_久久久久久电影_久久99精品久久久久久按摩秒播_天堂福利影院_国产男女爽爽爽免费视频_国产美女久久

JOURNAL OF ALGEBRA

JOURNAL OF ALGEBRA

代數(shù)雜志

期刊周期:Semimonthly
研究方向:數(shù)學(xué)
影響因子:0.666
通訊地址:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495
官網(wǎng):http://www.journals.elsevier.com/journal-of-algebra/
投稿地址:http://ees.elsevier.com/jalgebra/default.asp?acw=1
審稿速度:較快,2-4周

  中文簡介

《代數(shù)雜志》是一份領(lǐng)先的國際期刊,發(fā)表的論文顯示了在代數(shù)和相關(guān)計(jì)算方面的高質(zhì)量研究成果。只有最好和最有趣的論文才會被考慮發(fā)表在雜志上?紤]到這一點(diǎn),重要的是,這一貢獻(xiàn)應(yīng)產(chǎn)生實(shí)質(zhì)性的結(jié)果,對實(shí)地產(chǎn)生持久的影響。該雜志還在尋找能夠提供創(chuàng)新技術(shù)的工作,為未來的研究提供有希望的結(jié)果。計(jì)算代數(shù)部分計(jì)算代數(shù)部分已被引入,以提供一個(gè)適當(dāng)?shù)恼搲,供利用?jì)算機(jī)計(jì)算作出貢獻(xiàn),并擴(kuò)大該期刊的范圍。在《代數(shù)雜志》的計(jì)算代數(shù)部分,下列論文特別受歡迎:?通過計(jì)算機(jī)計(jì)算得到的結(jié)果——要適合發(fā)表這些結(jié)果,必須代表數(shù)學(xué)的一大進(jìn)步。用更高的計(jì)算機(jī)能力來擴(kuò)展以前的計(jì)算是不夠的。相反,貢獻(xiàn)必須展示新的方法和數(shù)學(xué)結(jié)果才能被接受。?特定代數(shù)結(jié)構(gòu)的分類(如果合適,以表的形式),這些結(jié)構(gòu)不容易獲得,并且對代數(shù)社區(qū)有用。?對實(shí)驗(yàn)的描述和結(jié)果,提出新的猜想,支持現(xiàn)有猜想,或者對現(xiàn)有猜想給出反例。?論文強(qiáng)調(diào)代數(shù)建設(shè)性的一面,如描述和分析的新算法(不是程序清單,也不是,在第一個(gè)實(shí)例,討論軟件開發(fā)的問題),改進(jìn)和擴(kuò)展現(xiàn)有的算法,計(jì)算方法的描述并不是嚴(yán)格意義上的算法(例如,他們不需要終止)。?代數(shù)與計(jì)算機(jī)科學(xué)之間的交互,如自動結(jié)構(gòu)、字詞問題以及組和半組中的其他決策問題,最好,但不一定,強(qiáng)調(diào)相關(guān)算法的實(shí)用性、實(shí)現(xiàn)和性能。?歡迎來自代數(shù)的所有領(lǐng)域的貢獻(xiàn),包括代數(shù)幾何或代數(shù)數(shù)論,如果重點(diǎn)是代數(shù)方面。描述代數(shù)結(jié)果或方法的應(yīng)用的貢獻(xiàn),例如在編碼理論,密碼學(xué),或微分方程的代數(shù)理論是非常受歡迎的。在計(jì)算代數(shù)部分發(fā)表論文的一個(gè)重要的通用標(biāo)準(zhǔn)是它對建設(shè)性方面的強(qiáng)調(diào)。這本雜志有一個(gè)開放的檔案。所有已發(fā)表的項(xiàng)目,包括研究論文,都可以無限制地訪問,并在發(fā)表48個(gè)月后永久免費(fèi)閱讀和下載。存檔中的所有論文均受愛思唯爾用戶許可的約束。

  英文簡介

The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.

  近年期刊自引率趨勢圖

  JCR分區(qū)

JCR分區(qū)等級 JCR所屬學(xué)科 分區(qū) 影響因子
Q3 MATHEMATICS Q3 0.908

  近年期刊影響因子趨勢圖

  CiteScore數(shù)值

CiteScore SJR SNIP 學(xué)科類別 分區(qū) 排名 百分位
1.50 1.046 1.339 大類:Mathematics 小類:Algebra and Number Theory Q2 41 / 113

64%

  相關(guān)數(shù)學(xué)SCI期刊推薦

SCI服務(wù)

搜論文知識網(wǎng) 冀ICP備15021333號-3

主站蜘蛛池模板: 久久精品av| 国产高清在线精品 | 亚洲成人三级 | 大香网伊人 | 色噜噜狠狠色综合中国 | 欧美九九九 | 亚洲成人自拍 | 国产黄色在线观看 | 国产午夜精品久久久 | 一区二区三区在线播放 | 色姑娘av| 日韩在线 | 犬夜叉在线观看 | 午夜在线精品 | 国产欧美一区二区三区在线看 | 国产成人综合一区二区三区 | 亚洲国产一区视频 | 成人在线免费观看 | 久草新在线 | 日韩一区不卡 | 中文字幕高清视频 | 国产 日韩 欧美 制服 另类 | 羞羞的视频在线观看 | 成人黄色av | av中文字幕在线 | 香蕉婷婷 | 91在线精品一区二区 | 黑人精品xxx一区一二区 | 久久伊人操| 91国产在线视频在线 | 免费国产视频 | 天天躁日日躁狠狠的躁天龙影院 | 一区二区三区欧美 | 日韩免费1区二区电影 | 精品一区二区三区在线观看 | 亚洲国产专区 | 成人av在线播放 | 亚洲精品日日夜夜 | 在线小视频 | 亚洲精品美女 | 日韩视频免费 |